Bulk synaptic vesicle endocytosis is rapidly triggered during strong stimulation.
نویسندگان
چکیده
Bulk endocytosis in central nerve terminals is activated by strong stimulation; however, the speed at which it is initiated and for how long it persists is still a matter of debate. To resolve this issue, we performed a characterization of bulk endocytic retrieval using action potential trains of increasing intensity. Bulk endocytosis was monitored by the loading of the fluorescent dyes FM2-10 and FM1-43, uptake of tetramethylrhodamine-dextran (40 kDa), or morphological analysis of uptake of the fluid-phase marker horseradish peroxidase. When neuronal cultures were subjected to mild stimulation (200 action potentials at 10 Hz), bulk endocytosis was not observed using any of our assay systems. However, when more intense trains of action potentials (400 or 800 action potentials at 40 and 80 Hz, respectively) were applied to neurons, bulk endocytosis was activated immediately, with the majority of bulk endocytosis complete by the end of stimulation. This contrasts with single synaptic vesicle endocytosis, the majority of which occurred after stimulation was terminated. Thus, bulk endocytosis is a fast event that is triggered during strong stimulation and provides the nerve terminal with an appropriate mechanism to meet the demands of synaptic vesicle retrieval during periods of intense synaptic vesicle exocytosis.
منابع مشابه
Bulk membrane retrieval in the synaptic terminal of retinal bipolar cells.
The mechanism of bulk membrane uptake at the synapse remains poorly defined, although exocytosis of synaptic vesicles is followed by compensatory membrane retrieval into both small vesicles and large cisternas or vacuoles. We investigated bulk retrieval in the presynaptic terminal of retinal bipolar cells. Fluorescence imaging of the membrane dye FM1-43 indicated that Ca2+-triggered exocytosis ...
متن کاملLive imaging of bulk endocytosis in frog motor nerve terminals using FM dyes.
We observed endocytosis in real time in stimulated frog motor nerve terminals by imaging the growth of large membrane infoldings labeled with a low concentration of FM dye. The spatial and temporal information made available by these experiments allowed us to image several new aspects of this synaptic vesicle recycling pathway. Membrane infoldings appeared near synaptic vesicle clusters and gre...
متن کاملThe molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles.
Central nerve terminals release neurotransmitter in response to a wide variety of stimuli. Because maintenance of neurotransmitter release is dependent on the continual supply of synaptic vesicles (SVs), nerve terminals possess an array of endocytosis modes to retrieve and recycle SV membrane and proteins. During mild stimulation conditions, single SV retrieval modes such as clathrin-mediated e...
متن کاملA dynamin 1-, dynamin 3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis
The exocytosis of synaptic vesicles (SVs) elicited by potent stimulation is rapidly compensated by bulk endocytosis of SV membranes leading to large endocytic vacuoles ('bulk' endosomes). Subsequently, these vacuoles disappear in parallel with the reappearance of new SVs. We have used synapses of dynamin 1 and 3 double knock-out neurons, where clathrin-mediated endocytosis (CME) is dramatically...
متن کاملPerturbation of synaptic vesicle delivery during neurotransmitter release triggered independently of calcium influx.
Although much evidence suggests that calcium (Ca(2+)) usually triggers synaptic vesicle exocytosis and neurotransmitter release, the role of Ca(2+) in vesicle endocytosis and in the delivery of fusion-competent vesicles (i.e. mobilisation and/or priming) in nerve terminals remains unclear. To address this issue, we have studied synaptic vesicle dynamics in cultured rat neurones under conditions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 26 شماره
صفحات -
تاریخ انتشار 2008